千零一十九,就是第九象限末位所写的定差。
遭时再以九乘余数,得八万一千一百七十一,就是第九象限的累积数,与前一种方法的得敷相同。
只是前一种方法是先乘后减,后一种是先减后乘,其道理是一样的。
按:《授时历》对于日月五星运行度数的增减,都是用垛积招差的方法来计算,这种方法巧妙地与天体的运行相合,与西方人用小轮推算的方法,殊途同归。
然而传世的各种算术书,都没有记载这种方法,《历草》记载了这种方法,但没有谈它的道理。
宣城梅文鼎为此作了图解,对于平差、立差的道理,垛积的方法,都有解说阐明其所以然。
有专书流行于世,不能详细抄录,只是摘录了《招差图说》,以说明他创立这种方法的大意而已。
凡是推算敷据衰盈初缩末:将立差三十一微,乘以六,得一秒八十六微,就是加分立差。
将平差二分四十六秒,加倍,得四分九十二秒,加入加分立差,得四分九十三秒八十六微,就是平立合差。
将定差五百一十三分三十二秒,减平差二分四十六秒,再碱立差三十一微,剩五百一十分八十五秒六十九微,就是加分。
缩初盈末:将立差二十七微,乘以六,得一秒六十二微,就是加分立差。
将平差二分二十一秒,加倍,得四分四十二秒,加入加分立差,得四分四十三秒六十二微,就是平立合差。
将定差四百八十七分零六秒,减平差二分二十一秒,再减立差二十七微,余四百八十四分八十四秒七十三微,就是加分。
以上所推算的,都是象限第一天的数据。
推算次日,都以加分立差,加平立合差,就是次日的平立合差。
以平立合差减这一日的加分,就是次日的加分。
盈积和缩减都相同。
将加分累计,就是盈积和缩减的累计数,其敷据都见于数据表。
月亮运行快慢平立定三差的来源月亮运行一周焉二十七日五十五刻四六,测量分焉四象,每象各分七段,四象二十八段,每段十二限,每象八十四限,共三百三十六限,而四象合为一周。
以四象作为除数,舆旋转一周的日敷相除,每象得六日八八八六五,再分为七段,每段下实测月亮运行快慢的数据,再与平均速度相减,以求积差。
以各段的积差作为被除数,以各段的积限作为除数与之相除,就是各段、限的平均差。
将各段、限的平均差,与后段相减就是一差。
将一差与后段一差相减就是二差。
将第一段的限平差十分七二六作为泛平积。
将第一段一差四十七秒七六,减第一段二差九秒三六,余三十八秒四十微,就是泛平积差。
另外将第一段的二差九秒三十六微折半,得四秒六十八微,就是泛立积差。
以泛平积差三十八秒四十微,加泛平积十分七二六,得十一分一十一秒,就是定差。
将泛平积差三十八秒四十微,减泛立积差四秒六十八微,余三十三秒七十二微作为被除数,以十二限作为除数与之相除,得二秒八十一微,就是平差。
将泛立积差四秒六十八微作为被除数,以十二限作为除数,除二次,得三微二十五纤,就是立差。
凡是求月亮运行快慢,都以所求时段的起始日数乘每日十二限二十分,以在第八十四限以下马初,在此以上逆推减去一百六十八限的余数为末。
各根据初、末的限乘立差,得敷再加平差,再乘以初、末的限敷,得数再藏定差,余数再乘以初、末限敷,就是快慢的累积敷。
其初限是从最慢最快处顺推至后,末限是从最慢最快处逆推至前,它们舆最慢最快处的距离相同,所纵盈积的度数也相同。
月亮和太阳设立的方法相同,但太阳以定气确定象限,所以盈积和缩减的敷量不同。
月亮以平均速度确定象限,所以快慢原理相同。
推算数据表的方法:将立差三微二十五纤,乘以六,得十九微五十纤,就是损益立差。
将平差二秒八十一微,加倍,得五秒六十二微,再加损益立差十九微五十纤,共得五秒八十一纤,就是初限平立合差。
从这里开始逐次加上损益立差,就是每限的平立合差。
到第八十限之下,累积至二十一秒四一五,就是平立合差的最大值。
八十一限之下平立合差为一秒七八o九,八十二限之下平立合差焉一秒七八O八,到八十三限之下,平立合差将益分即增益数和损分即减损数从中分开,是益分的终结。
八十四限之下的平立合差,也将损分和益分从中分开,是损分的开始。
到八十六限下的平立合差,也是二十一秒四一五,从这里开始逐次减去损益立差,则每限的平立合差,到末限与初限相同。
将定差十一分十一秒,减去平差二秒八十一微,再减去立差三微二十五纤,余十一分零八秒十五微七十五纤,就是加分定差,也就是初限的损益分。